- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
medium
The the circle passing through the foci of the $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ and having centre at $(0,3) $ is
A
${x^2} + {y^2} - 6y - 7 = 0$
B
$\;{x^2} + {y^2} - 6y + 7 = 0$
C
$\;{x^2} + {y^2} - 6y - 5 = 0$
D
$\;{x^2} + {y^2} - 6y + 5 = 0$
(JEE MAIN-2013)
Solution

$a=4, b=3, e=\sqrt{1-\frac{9}{16}} \quad \Rightarrow \quad \frac{\sqrt{7}}{4}$
Foci is $(\pm \text { ae }, 0)$ $\Rightarrow \quad(\pm \sqrt{7}, 0)$
$r=\sqrt{(a e)^{2}+b^{2}}$
$\sqrt{7+9}$
$=4$
Now equation of circle is $(x-0)^{2}+(y-3)^{2}=16$
$x^{2}+y^{2}-6 y-7=0$
Standard 11
Mathematics