The  the circle passing through the foci of the $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ and having centre at $(0,3) $ is

  • [JEE MAIN 2013]
  • A

    ${x^2} + {y^2} - 6y - 7 = 0$

  • B

    $\;{x^2} + {y^2} - 6y + 7 = 0$

  • C

    $\;{x^2} + {y^2} - 6y - 5 = 0$

  • D

    $\;{x^2} + {y^2} - 6y + 5 = 0$

Similar Questions

The equation of normal at the point $(0, 3)$ of the ellipse $9{x^2} + 5{y^2} = 45$ is

If $F_1$ and $F_2$ be the feet of the perpendicular from the foci $S_1$ and $S_2$ of an ellipse $\frac{{{x^2}}}{5} + \frac{{{y^2}}}{3} = 1$ on the tangent at any point $P$ on the ellipse, then $(S_1 F_1) (S_2 F_2)$ is equal to

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.

Let $P$ is any point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ . $S_1$ and $S_2$ its foci then maximum area of $\Delta PS_1S_2$ is (in square units)

For the ellipse $3{x^2} + 4{y^2} = 12$, the length of latus rectum is